Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadn9998, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536915

RESUMO

Cortical neurogenesis follows a simple lineage: apical radial glia cells (RGCs) generate basal progenitors, and these produce neurons. How this occurs in species with expanded germinal zones and a folded cortex, such as human, remains unclear. We used single-cell RNA sequencing from individual cortical germinal zones in ferret and barcoded lineage tracking to determine the molecular diversity of progenitor cells and their lineages. We identified multiple RGC classes that initiate parallel lineages, converging onto a common class of newborn neuron. Parallel RGC classes and transcriptomic trajectories were repeated across germinal zones and conserved in ferret and human, but not in mouse. Neurons followed parallel differentiation trajectories in the gyrus and sulcus, with different expressions of human cortical malformation genes. Progenitor cell lineage multiplicity is conserved in the folded mammalian cerebral cortex.


Assuntos
Córtex Cerebral , Furões , Animais , Camundongos , Humanos , Linhagem da Célula/fisiologia , Neurônios/fisiologia , Diferenciação Celular , Neurogênese
2.
Dev Dyn ; 251(11): 1834-1847, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35727300

RESUMO

BACKGROUND: The fasciculus retroflexus is the prominent efferent pathway from the habenular complex. Medial habenular axons form a core packet whereas lateral habenular axons course in a surrounding shell. Both groups of fibers share the same initial pathway but differ in the final segment of the tract, supposedly regulated by surface molecules. The gene Amigo2 codes for a membrane adhesion molecule with an immunoglobulin-like domain 2 and is selectively expressed in the medial habenula. We present it as a candidate for controlling the fasciculation behavior of medial habenula axons. RESULTS: First, we studied the development of the habenular efferents in an Amigo2 lack of function mouse model. The fasciculus retroflexus showed a variable defasciculation phenotype. Gain of function experiments allowed us to generate a more condensed tract and rescued the Amigo2 knock-out phenotype. Changes in Amigo2 function did not alter the course of habenular fibers. CONCLUSION: We have demonstrated that Amigo2 plays a subtle role in the fasciculation of the fasciculus retroflexus.


Assuntos
Fasciculação , Habenula , Camundongos , Animais , Mesencéfalo , Axônios , Proteínas de Membrana , Proteínas do Tecido Nervoso/genética
3.
Front Cell Dev Biol ; 9: 755729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722541

RESUMO

Wnt1 is one of the morphogenes that controls the specification and differentiation of neuronal populations in the developing central nervous system. The habenula is a diencephalic neuronal complex located in the most dorsal aspect of the thalamic prosomere. This diencephalic neuronal population is involved in the limbic system and its malfunction is related with several psychiatric disorders. Our aim is to elucidate the Wnt1 role in the habenula and its main efferent tract, the fasciculus retroflexus, development. In order to achieve these objectives, we analyzed these structures development in a Wnt1 lack of function mouse model. The habenula was generated in our model, but it presented an enlarged volume. This alteration was due to an increment in habenular neuroblasts proliferation rate. The fasciculus retroflexus also presented a wider and disorganized distribution and a disturbed final trajectory toward its target. The mid-hindbrain territories that the tract must cross were miss-differentiated in our model. The specification of the habenula is Wnt1 independent. Nevertheless, it controls its precursors proliferation rate. Wnt1 expressed in the isthmic organizer is vital to induce the midbrain and rostral hindbrain territories. The alteration of these areas is responsible for the fasciculus retroflexus axons misroute.

4.
Brain Struct Funct ; 225(9): 2857-2869, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33145610

RESUMO

During the development of the central nervous system, the immature neurons suffer different migration processes. It is well known that Nkx2.1-positive ventricular layer give rise to critical tangential migrations into different regions of the developing forebrain. Our aim was to study this phenomenon in the hypothalamic region. With this purpose, we used a transgenic mouse line that expresses the tdTomato reporter driven by the promotor of Nkx2.1. Analysing the Nkx2.1-positive derivatives at E18.5, we found neural contributions to the prethalamic region, mainly in the zona incerta and in the mes-diencephalic tegmental region. We studied the developing hypothalamus along the embryonic period. From E10.5 we detected that the Nkx2.1 expression domain was narrower than the reporter distribution. Therefore, the Nkx2.1 expression fades in a great number of the early-born neurons from the Nkx2.1-positive territory. At the most caudal positive part, we detected a thin stream of positive neurons migrating caudally into the mes-diencephalic tegmental region using time-lapse experiments on open neural tube explants. Late in development, we found a second migratory stream into the prethalamic territory. All these tangentially migrated neurons developed a gabaergic phenotype. In summary, we have described the contribution of interneurons from the Nkx2.1-positive hypothalamic territory into two different rostrocaudal territories: the mes-diencephalic reticular formation through a caudal tangential migration and the prethalamic zona incerta complex through a dorsocaudal tangential migration.


Assuntos
Movimento Celular , Hipotálamo/crescimento & desenvolvimento , Neurônios/fisiologia , Fator Nuclear 1 de Tireoide/fisiologia , Animais , Feminino , Interneurônios/fisiologia , Masculino , Camundongos Transgênicos , Vias Neurais/fisiologia , Neurogênese , Zona Incerta/crescimento & desenvolvimento
5.
Front Neuroanat ; 14: 29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581730

RESUMO

Gestational exposure to valproic acid (VPA) is known to cause behavioral deficits of sociability, matching similar alterations in human autism spectrum disorder (ASD). Available data are scarce on the neuromorphological changes in VPA-exposed animals. Here, we focused on alterations of the dopaminergic system, which is implicated in motivation and reward, with relevance to social cohesion. Whole brains from 7-day-old mice born to mothers given a single injection of VPA (400 mg/kg b.wt.) on E13.5 were immunostained against tyrosine hydroxylase (TH). They were scanned using the iDISCO method with a laser light-sheet microscope, and the reconstructed images were analyzed in 3D for quantitative morphometry. A marked reduction of mesotelencephalic (MT) axonal fascicles together with a widening of the MT tract were observed in VPA treated mice, while other major brain tracts appeared anatomically intact. We also found a reduction in the abundance of dopaminergic ventral tegmental (VTA) neurons, accompanied by diminished tissue level of DA in ventrobasal telencephalic regions (including the nucleus accumbens (NAc), olfactory tubercle, BST, substantia innominata). Such a reduction of DA was not observed in the non-limbic caudate-putamen. Conversely, the abundance of TH+ cells in the substantia nigra (SN) was increased, presumably due to a compensatory mechanism or to an altered distribution of TH+ neurons occupying the SN and the VTA. The findings suggest that defasciculation of the MT tract and neuronal loss in VTA, followed by diminished dopaminergic input to the ventrobasal telencephalon at a critical time point of embryonic development (E13-E14) may hinder the patterning of certain brain centers underlying decision making and sociability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...